
1. Demo database for the course: EMPLOYEE
(a sample database included with the distribution of Firebird Server, adapted to MySQL).

Database schema

Sample tables and data from database employee

EMPLOYEE

DEPARTMENT

PROJECT

2. SQL SELECT Statement

 The SELECT statement is used to extract data from a database (from a table, view or other database

objects).
 The result is stored in a result table, called the result-set.
 The result set table has columns, as specified in the SELECT statement, and rows, which satisfies the

imposed conditions.
 The set of rows return by the SELECT statement may contain duplicates.
 The syntax is rather complicated. There can be several levels of nesting.
 The user to execute a SELECT statement must be granted appropriate privileges to select data.
 SQL keywords, names of tables, columns, etc., are not case-sensitive.
 A semicolon at the end of each SQL statement is not required.

Simplified syntax of the SELECT statement

SELECT columns names, expressions, functions (separated by a comma)
FROM tables or views names, joining clauses
WHERE the condition used to filter records
GROUP BY columns names, according to which the result set will be grouped by
HAVING the condition used to filter groups
ORDER BY columns (or expressions) the result set is sorted by

a) The below statement selects all rows and all columns from the table employee (use an asterisk *

to choose all columns from a table)

SELECT *
FROM employee

b) Choosing only selected columns

SELECT full_name, salary, hire_date
FROM employee

SELECT full_name AS employee_name, hire_date AS date, salary AS year_salary
FROM employee

To each SQL expression and any column in
the select clause (and to a table as well), one
can give an alias (used to temporarily rename
a table or a column heading).

c) Ordering the result set: clause ORDER BY

Ascending sort, default, option ASC can be skipped

SELECT full_name, salary, hire_date
FROM employee
ORDER BY full_name ASC

For a descending sort, use option DESC

SELECT full_name, salary, hire_date
FROM employee
ORDER BY salary DESC

Ascending sort, by two columns
SELECT full_name, salary, hire_date

FROM employee
ORDER BY last_name, salary

d) SQL expressions

 An SQL expression can be composed from columns names, operators, constants and
functions.

 Binary operators: arithmetical +, -, *,/.
 SQL uses standard order of operators, brackets (and) can be used if necessary.
 To each SQL expression and any column in the select clause (and to a table as well), one can

give an alias (used to temporarily rename a table or a column heading). If an alias consists of
two or more words, use quotation marks, e.g., "salary per month".

SELECT full_name, salary AS actual_salary, salary*1.2 AS rise, (salary+200)/100 AS tax
FROM employee

In this statement, three aliases (actual_salary,
rise, tax) are created (for the column salary,
and next two expressions, respectively).

SELECT CONCAT(last_name,' ',phone_ext) AS contact_data -- built-in function CONCAT()
FROM employee

e) Use DISTINCT to eliminate duplicates

SELECT DISTINCT job_country

FROM employee

3. SQL SELECT Statement with the clause WHERE

 The WHERE clause is used to filter records. It is used to extract only those records that fulfil a specified
criterion – the condition which can be made of:

 names of columns, functions, constants,

 operators of comparison =, <, >, <>, <=, >=, !=

 SQL operators such as LIKE, BETWEEN, IN

 logical operators AND &&, OR ||, NOT !, XOR

 the condition may return one of the values: true, false, unknown (NULL) (if the condition returns unknown,
it is often caused by the occurrence of NULL, which means an empty value),

 the SELECT statement will return the records, for which the condition in WHERE evaluated to true,

 SQL requires single quotes around text values and data/time values; no quotes around numeric fields,

 in the WHERE clause we cannot use aggregating functions,

 the conditions in WHERE can be constructed using nested queries, i.e., subselects.

a) WHERE with a compound condition using logical operators

SELECT full_name, hire_date, job_country
FROM employee
WHERE job_country='Japan' OR job_country='Italy'

SELECT full_name, hire_date, job_country

FROM employee
WHERE hire_date>'01.07.1993' AND
 job_country<>'USA'

b) SQL operators

 Operator IN - checks, whether the value belongs to the specified set
 value IN (value1, value2, …)

SELECT *
FROM employee
WHERE job_country IN ('USA' , 'Italy')

 Operator BETWEEN – checks, whether the value is contained in a specified closed interval
 value BETWEEN value1 AND value2

SELECT *
FROM employee
WHERE salary BETWEEN 50000 AND 100000

 To check, if the value is an empty value NULL or not, use operator IS NULL or IS NOT NULL
 value IS NULL

SELECT *
FROM employee
WHERE phone_ext IS NULL

 The LIKE operator is used to search for a specified pattern in a column.
 text expression LIKE ‘pattern’

There are two wildcard characters which are used to create a pattern in the LIKE operator:
 % a substitute for zero or more characters
 _ a substitute for a single character

The next query searches for all employees whose name starts with B:

SELECT *
FROM employee
WHERE last_name LIKE 'B%'

To list all employees whose last name ends on la

SELECT *
FROM employee
WHERE last_name LIKE '%la'

The next query searches for all employees whose name starts with B, next two characters are
arbitrary, then it must contain letter x, then any characters:

SELECT *
FROM employee
WHERE last_name LIKE 'B__x%'

If the text we are looking for contains _ or %, we can use ESCAPE
For example, to search for a sign _ in a column phone_ext, we can use LIKE as follows:

SELECT *
FROM employee
WHERE phone_ext LIKE '%^_%' ESCAPE '^'

SQL comments:

Single-line:
-- comment

Multi-line:
/* ……………………………………
………………………………………
…………. …………………………….*/

