
1 

4. SQL SELECT Statement with clauses GROUP BY and HAVING 
 

SELECT .......  columns names, expressions, functions (separated by a comma) 
FROM  .......  tables or views names, joining clauses 
WHERE .......  the condition used to filter records 
GROUP BY ....... columns names, according to which the result set will be grouped 
HAVING .......  the condition used to filter groups 
ORDER BY ....... columns (or expressions) the result set is sorted by 

 
 

a) Aliases to column names, expressions and tables 
An alias I used as a temporary name of a table or a column heading or to name an expression. 
If an alias consists of two or more words, use quotation marks, e.g., "salary per month". 

 
SELECT salary AS year_salary      an alias for a column 
FROM employee  
 
An alias can be given to a table or view. Then in the SELECT statement we can use this alias to refer to this table 
 
SELECT emp.last_name, emp.salary     columns in employee are referred to using alias emp 
FROM employee emp       table employee has alias emp  
  
We can refer to a table column in an SQL statement using 
 the name of the column: salary 

 the name of the table and a column name, separated by a full stop: employee.salary (the table name is used as a qualifier for the column) 

 an alias for a table and a column name, separated by a full stop: emp.salary (the alias is a qualifier) 
 

b) some SQL scalar functions (SQL scalar functions return a single value, based on the input value) 

 the function UPPER(text) returns the text with all letters changed to capital ones 

 the function LOWER(text) returns the text with all letters changed to small ones 

 the function CAST(data AS data_type) is used to make a conversion from one data type to another 
 
SELECT UPPER(full_name), CAST(salary AS CHAR(12)) 
FROM employee 



2 

c) SQL aggregate functions 
SQL aggregate functions return a single value, calculated from values in a column. Most useful are the following: 
 

 COUNT(*)   – returns the number of rows that matches a specified criteria (counts the number of rows) 
 SUM(column_name) - returns the total sum of a given column       //only for numeric columns 
 AVG(column_name) - returns the arithmetic average value of a given column      // only for numeric columns 
 MIN(column_name)  - returns the smallest value of the given column 
 MAX(column_name) - returns the largest value of the given column 

 
 If as an argument of an aggregating function we put DISTINCT column_name, then the function will take into account only 

distinct values from a given column. 
 COUNT(column)   - returns the number of non-empty values in the given column 
 COUNT(DISTINCT column)  - returns the number of distinct non-empty values in the specified column 
 An aggregate function cannot be used in WHERE clause 

 
SELECT COUNT(*), SUM(SALARY)  
FROM employee  
WHERE dept_no=’600’  

SELECT dept_no, COUNT(phone_ext) 
FROM employee 
GROUP BY dept_no 

SELECT AVG(DISTINCT salary) 
FROM employee 

SELECT MIN(LOWER(job_code)), dept_no 
FROM employee 
GROUP BY dept_no 

 
d)  GROUP BY clause is used to group the result-set by one or more columns 

SELECT … 
FROM … 
GROUP BY column_name 

 
 If we use the group by clause in the SELECT statement, then one group will consists of all rows, having the same values 

in the columns specified in GROUP BY  
 GROUP BY is often used with aggregate functions. In such a case, a value of an aggregate function is computed for each 

group separately 
 If we use GROUP BY, then on a SELECT list we can put only: 

 Names of columns, which are in the GROUP BY clause,  



3 

 Expressions that use only the columns, which are in the GROUP BY clause 

 Constants 

 Aggregate functions 
 If we use GROUP BY, then in an ORDER BY clause we may put only the columns, which are used in GROUP BY 

 
SELECT COUNT(*), AVG(SALARY), dept_no  
FROM employee  
GROUP BY dept_no  
 

SELECT SUM(SALARY), job_country, dept_no 
FROM employee  
GROUP BY job_country, dept_no  
ORDER BY SUM(SALARY) 
 

SELECT COUNT(DISTINCT dept_no), SUM(SALARY), job_country 
FROM employee  
GROUP BY job_country 
ORDER BY SUM(SALARY) 
 

SELECT SUM(SALARY), job_country, dept_no 
FROM employee  
WHERE hire_date>=’1990.12.23’ 
GROUP BY job_country, dept_no  
ORDER BY SUM(SALARY) DESC 
 

e) HAVING clause is used to specify a criterium for choosing groups. We put there conditions, which are used to decide which 
groups should be included in the result set. In this conditions we can use only the columns or expressions, which are in the 
GROUP BY clause. 
 HAVING can be used only together with the GROUP BY clause 
 In the conditions put in the HAVING clause, we can use aggregate functions (it is in fact the main purpose for using HAVING) 
 All conditions referring only to rows, but not to groups, should be put in the WHERE clause 
 

SELECT dept_no, SUM(salary) 
FROM employee 
GROUP BY dept_no 
HAVING COUNT(*)<=3 

SELECT dept_no, COUNT(*), AVG(SALARY)  
FROM employee  
WHERE hire_date>=’1999.09.18’  
GROUP BY dept_no  
HAVING SUM(salary)>=30000 AND COUNT(*)>=3 

                ORDER BY AVG(salary) DESC 
 

 


