
The PL/SQL language

PL/SQL is a procedural language used in Oracle databases. This
language is an extension of SQL, providing several instructions, such
as loops, conditional statements, blocks, functions, procedures, ...

With PL/SQL we can, for instance:
I use loops and conditional statements;
I create functions, procedures, triggers and packages;
I improve the performance of database;
I create complex programs, to solve problems which are

impossible or hard to solve using only SQL instructions;
I handle errors and exceptions.

Using PL/SQL we can write the following types of programs:

1. Anonymous blocks;

2. Stored procedures;

3. Triggers;

4. Functions.

Basic data types in PL/SQL. Numeric data

NUMBER[(precision,scale)]: to store numeric data: Fixed-point or
floating-point numbers.

Precision is the total number of digits, scale is the number of digits to
the right of the decimal point.
For precision, the maximum value is 38 (by default, 38).
Scale can be from -84 to 127 (default 0).

To define an integer, use: NUMBER(p) or INT (a subtype of
NUMBER).

Fixed-point numbers are defined by giving both precision and scale,
for example, NUMBER(6,3).

Floating-point numbers are defined as NUMBER, with no parameters.

Basic data types in PL/SQL. Numeric data

PLS_INTEGER: stores signed integers in the range -2,147,483,648
through 2,147,483,647, represented in 32 bits.
For efficiency, use PLS_INTEGER values for all calculations that fall
within its range. It is faster than NUMBER or INT.

BINARY_FLOAT and BINARY_DOUBLE data types represent
single-precision and double-precision floating-point numbers,
respectively.

A BINARY_FLOAT literal ends with f (for example, 2.07f).

A BINARY_DOUBLE literal ends with d (for example,
3.000094d).

Basic data types in PL/SQL

CHAR(n) - Fixed-length character string with maximum size of
32,767 bytes, n must be from 1 to 32767. By default, n=1.

VARCHAR2(n) - Variable-length character string with maximum size
of 32,767 bytes, n must be from 1 to 32767. The parameter n must be
given.

BOOLEAN - data type that stores logical values, which can be used
in logical operations. The logical values are the Boolean values
TRUE and FALSE and the value NULL. SQL has no data type
equivalent to BOOLEAN.

DATE - to store date and time.

TIMESTAMP - stores the year, month, day, hour, minute, and second.

Anonymous blocks in PL/SQL

In PL/SQL we can write anonymous blocks, without giving them any
names. Such blocks are not stored in the database. They can be used
for single execution of code. Simplified syntax:
DECLARE

variables declarations
BEGIN

executable code
END;

In the next example each employee in table employee is given a rise
of 100$.
DECLARE rise NUMBER(4);
BEGIN

rise:=100;
UPDATE employee SET salary=salary+rise;

END;

Anonymous blocks in PL/SQL

In PL/SQL we can write anonymous blocks, without giving them any
names. Such blocks are not stored in the database. They can be used
for single execution of code. Simplified syntax:
DECLARE

variables declarations
BEGIN

executable code
END;

In the next example each employee in table employee is given a rise
of 100$.
DECLARE rise NUMBER(4);
BEGIN

rise:=100;
UPDATE employee SET salary=salary+rise;

END;

Constants and variables declarations
Constants and variables are declared in the DECLARE section of the
anonymous block. To declare a variable write:
DECLARE variable data_type;
To declare a constant:
DECLARE const1 CONSTANT data_type := value;

For example:
DECLARE number1 NUMBER(4);

integer1 INT :=90;
integer2 PLS_INTEGER NOT NULL :=0;
double1 BINARY_DOUBLE;
text1 VARCHAR2(30);
date1 DATE DEFAULT SYSDATE;
date2 DATE := DATE ’2017.04.25’;
boolean1 BOOLEAN;
const1 CONSTANT CHAR(5) :=’something’;

In order to initialize a variable, we can use the statement:
variable1 data_type :=expression or the DEFAULT
clause: variable1 data_type DEFAULT value. Otherwise,
the variable is, by default, initialized to NULL.

Using SQL statements in PL/SQL programs

In PL/SQL we can use the INSERT, UPDATE, DELETE
statements, similarly, as in SQL. The SELECT statement is used
together with the clause INTO.

Using SQL statements in PL/SQL programs

In PL/SQL we can use the INSERT, UPDATE, DELETE
statements, similarly, as in SQL. The SELECT statement is used
together with the clause INTO.

Example: using UPDATE in a block:
DECLARE
amount NUMBER(5):=200;
dept INT;
BEGIN
dept:=90;
UPDATE employees SET salary=salary+amount
WHERE department_id=dept;
END;

Using SQL statements in PL/SQL programs

In PL/SQL we can use the INSERT, UPDATE, DELETE
statements, similarly, as in SQL. The SELECT statement is used
together with the clause INTO.

Example: using INSERT in a block:
DECLARE
id char(2);
name varchar2(40);
region number:=1;
BEGIN
name:=’Poland’;
id:=’PL’;
INSERT INTO
countries(country_id,country_name,region_id)
VALUES (id,name,region);
END;

The DELETE statement is used analogously.

In case of the SELECT statement, the clause INTO is required. The
SELECT statement must return exactly one row!
In the clause INTO we put the list of variables, to which the values
returned by SELECT are assigned to.
The number and types of the variables and the values returned by the
SELECT statement must match.

declare
v_sum numeric(10);
v_average numeric(10,2);
begin
select sum(salary), avg(salary) into v_sum,
v_average from employees;
DBMS_OUTPUT.put_line(’total sum: ’||v_sum||’
average: ’||v_average);
end;
To test the PL/SQL programs, it is convenient to display the results on the
console. It can be done using the function put_line from the package
DBMS_OUTPUT, as follows:
DBMS_OUTPUT.Put_line(text);

In case of the SELECT statement, the clause INTO is required. The
SELECT statement must return exactly one row!
In the clause INTO we put the list of variables, to which the values
returned by SELECT are assigned to.
The number and types of the variables and the values returned by the
SELECT statement must match.
declare
v_sum numeric(10);
v_average numeric(10,2);
begin
select sum(salary), avg(salary) into v_sum,
v_average from employees;
DBMS_OUTPUT.put_line(’total sum: ’||v_sum||’
average: ’||v_average);
end;

To test the PL/SQL programs, it is convenient to display the results on the
console. It can be done using the function put_line from the package
DBMS_OUTPUT, as follows:
DBMS_OUTPUT.Put_line(text);

In case of the SELECT statement, the clause INTO is required. The
SELECT statement must return exactly one row!
In the clause INTO we put the list of variables, to which the values
returned by SELECT are assigned to.
The number and types of the variables and the values returned by the
SELECT statement must match.
declare
v_sum numeric(10);
v_average numeric(10,2);
begin
select sum(salary), avg(salary) into v_sum,
v_average from employees;
DBMS_OUTPUT.put_line(’total sum: ’||v_sum||’
average: ’||v_average);
end;
To test the PL/SQL programs, it is convenient to display the results on the
console. It can be done using the function put_line from the package
DBMS_OUTPUT, as follows:
DBMS_OUTPUT.Put_line(text);

In case of the SELECT statement, the clause INTO is required. The
SELECT statement must return exactly one row!
In the clause INTO we put the list of variables, to which the values
returned by SELECT are assigned to.
The number and types of the variables and the values returned by the
SELECT statement must match.
declare
v_sum numeric(10);
v_average numeric(10,2);
begin
select sum(salary), avg(salary) into v_sum,
v_average from employees;
DBMS_OUTPUT.put_line(’total sum: ’||v_sum||’
average: ’||v_average);
end;
The names of variables should be different from the names of the columns in
the database tables.
Some conventions can be helpful, for instance, each variable name can start
with v_, constants with c_, and so on.

PL/SQL Control Structures

The assignment operator :=

variable :=expression;

for example:

amount:=100;
actual_date:=sysdate;

Control Structures: conditional statement IF

The basic syntax of the conditional statement:

IF...THEN...END IF.

We can also use the ELSE and/or ELSEIF clauses:
IF condition THEN instructions;
ELSIF condition THEN instructions;
ELSE instructions END IF;

If the IF-condition is satisfied, then the first THEN-block of
instructions is executed. For otherwise, and if the ELSIF-condition is
fulfilled, then the second THEN-block of instructions is executed. For
otherwise, the instructions from the ELSE-block are executed.
Both clauses ELSE and ELSEIF are not mandatory.

Example: solve the equation ax + b = 0.
DECLARE a number; b number;
BEGIN

a:=1;
b:=10;
IF(a=0) THEN

IF(b<>0) THEN dbms_output.put_line(’no
solution’);

ELSE dbms_output.put_line(’infinitely many
solutions’);

END IF;
ELSE dbms_output.put_line(’the root x=’||-b/a);
END IF;

END;

Control Structures: conditional statement CASE

CASE — two forms: simple case and searched case.
Searched CASE.
The search conditions are evaluated sequentially. If a search
condition yields TRUE, its WHEN clause is executed. If any WHEN
clause is executed, control passes to the next statement, so subsequent
search conditions are not evaluated.

If none of the search conditions yields TRUE, the ELSE clause is
executed. The ELSE clause is optional. But if none of the search
conditions yields TRUE and there is no ELSE, CASE will return an
error: exception CASE_NOT_FOUND.

CASE
WHEN condition1 THEN instructions1;
WHEN condition2 THEN instructions2;
...
ELSE instructions;
END CASE;

Using searched CASE:

DECLARE i NUMBER(1) := 3;
BEGIN
CASE
WHEN i=1 THEN DBMS_OUTPUT.PUT_LINE(’i equals
1’);
WHEN i>2 THEN DBMS_OUTPUT.PUT_LINE(’i is
greater than 2’);
ELSE DBMS_OUTPUT.PUT_LINE(’i equals ’ || i);
END CASE;
END;

Control Structures: conditional statement CASE

Simple CASE statement:
Such a CASE statement uses a selector: an expression whose value is
used to select one of several alternatives. The selector expression is
evaluated only once.
WHEN clauses are checked sequentially. The value of the selector
determines which clause is executed. If the value of the selector
equals the value of a WHEN-clause expression, that WHEN clause is
executed.
If the CASE statement does not match any of the WHEN clauses, then
the ELSE clause is executed, if present, otherwise, an exception
CASE_NOT_FOUND is raised.

CASE selector
WHEN value1 THEN instructions1;
WHEN value2 THEN instructions2;
...
ELSE instructions;
END CASE;

Loop iterations: LOOP

Basic LOOP is defined within clauses LOOP and END LOOP.
Syntax:
LOOP

sequence_of_statements
END LOOP;
To prevent an infinite loop, we must use either an EXIT WHEN or
EXIT statement (with an IF statement).

For example:

DECLARE
i INT :=1;

BEGIN
LOOP

dbms_output.put_line(’i= ’||TO_CHAR(i));
EXIT WHEN i=10;
i:=i+1;

END LOOP;
END;

Loops: WHILE

The WHILE-LOOP statement executes the statements in the loop
body as long as a condition is true:

WHILE condition LOOP
sequence_of_statements

END LOOP

The condition is evaluated before each iteration of the loop. If it is
TRUE, the sequence of statements is executed, then control resumes
at the top of the loop. If it is FALSE or NULL, the loop is skipped and
control passes to the next statement.

The number of iterations depends on the condition and is unknown
until the loop completes. The condition is tested at the top of the loop,
so the sequence might execute zero times.

One of the statements inside the loop body must change the condition
to FALSE or NULL, to avoid an infinite loop. To exit a WHILE loop
we can also use EXIT WHEN.

Loops: FOR

The FOR loop can be used, when the number of iterations is known in
advance. The FOR loop iterates over a specified range of integers
(lower_bound .. upper_bound). If lower_bound equals
upper_bound, the loop body is executed once.

FOR counter IN lower_bound ..upper_bound LOOP
sequence_of_statements

END LOOP

Inside a FOR loop, the counter can be read but cannot be changed.

By default, iteration proceeds upward from lower to higher bound.
After each iteration, the loop counter is incremented by 1.
Use the keyword REVERSE to iterate downward from higher to lower
bound. After each iteration, the loop counter is decremented. But, we
must put first the smaller value and then the larger one.
FOR counter IN REVERSE 1..n LOOP

sequence_of_statements
END LOOP.

Loops: FOR. The scope of the loop counter variable

FOR counter IN lower_bound ..upper_bound LOOP
sequence_of_statements

END LOOP

I The loop counter variable is defined only within the loop (its
scope is restricted to the loop).

I That variable cannot be referenced outside the loop.
I After the loop exits, the loop counter is undefined.
I The loop counter needs no declaration — it is implicitly declared

as a local variable of type INTEGER.

It is better not to give a loop variable the same name as an existing
variable, because the local declaration hides the global declaration,
i.e., inside the loop only the local variable is visible (the loop counter)
not the global variable with the same name.

Functions in PL/SQL
Function — a block of PL/SQL that has a name and is stored in the
database. The function must return a value.
In most cases, functions can be used in SQL statement similarly like
Oracle built-in functions.
Creating a function — basic syntax.

CREATE FUNCTION name
RETURN data_type
IS

variables declarations
BEGIN

executable statements
RETURN result;
END;
We can call a function from the SQL statement:
SELECT function_name FROM dual;
or from another PL/SQL block (or function, procedure, trigger).
To drop a function use
DROP FUNCTION name;

Example of a simple function

CREATE OR REPLACE FUNCTION summing
RETURN INT
IS
number1 INT:=90;
number2 INT:=100;
total INT;
BEGIN
total:=number1+number2;
RETURN total;
END;

Using parameters in functions

PL/SQL functions (and procedures) can have parameters of three
types:

IN - input parameter, read-only, used to pass data to a function or
procedure;

OUT - output parameter, can be used to return data from a procedure
(or, rarely, function); with NULL value until initialize;

IN OUT - input/output parameter; can be used to pass data to a
program and to return data from; can be used in cases when input data
can be changed during the execution of the program.

Remark. By default, if we do not put the type of a parameter, it is
treated as an IN parameter.

Input parameters in functions

In functions typically we use only input parameters (and RETURN
clause to return data).
Syntax of the function definition with input parameters:
CREATE FUNCTION name
(parameter1 IN data_type,
parameter2 IN data_type,...)
RETURN data_type
IS

variables declarations
BEGIN

executable statements
RETURN result;
END;

Remark. When using data types CHAR, NUMBER, VARCHAR2 for
parameters, we do not put the range; however, we can use subtypes,
like INTEGER, or types PLS_INTEGER, BINARY_FLOAT, ...

Example — function calculating an arithmetical mean of two numbers

CREATE OR REPLACE FUNCTION a_mean
(number1 IN NUMBER,
number2 IN NUMBER)
RETURN NUMBER
IS
mean NUMBER;
BEGIN
mean:=(number1+number2)/2;
RETURN mean;
END;

Function call:

SELECT a_mean(1,2) FROM dual;

Example — the function formatting postal codes

The function takes the chain of five integers, like 99999, representing
a postal code and returns it in the form 99-999.

CREATE OR REPLACE FUNCTION postal_code
(code IN char)
RETURN char
IS
BEGIN
RETURN substr(code,1,2)||’-’||substr(code,3);
END;

Function call:

SELECT postal_code(’56009’) FROM dual;

Attributes %TYPE and %ROWTYPE

We can use the attribute %TYPE to declare a variable (or parameter)
whose data type will be the same as the data type of the given column.
It is useful in situation, when the variable is used to store data from
the particular column.
For instance, to define a variable v_last_name with the same data
type as column last_name in table employee, use the dot
notation and attribute %TYPE as follows:

v_last_name employee.last_name%TYPE;

The advantages of using the attribute %TYPE:

I It is not necessary to know the data type of the column
last_name to define a variable with the same data type;

I If the data type of the column last_name will be changed in
the database, the data type of the variable v_last_name will
be changed automatically.

Attributes %TYPE and %ROWTYPE

The attribute %ROWTYPE provides a record type that represents a row
in a database table.
Such a record can store a row of data selected from the table or
fetched from a cursor.
The fields in the record correspond to the columns of the given table
(have the same names and data types).

For example, declare the variable v_dept_rec as a record for
storing a row of data from table department. Fields of the record
have the same names and data types as columns in table
department.

v_dept_rec department%ROWTYPE;

To refer to a field in a record, we use dot notation:

v_deptid := v_dept_rec.dept_id;

Cursors

For each SQL statement (such as INSERT, UPDATE, DELETE
and SELECT) used in a PL/SQL program, Oracle create a cursor (an
unnamed work area) to store data necessary to execute the statement,
among others, the status of the statement, and the set of selected rows
(for SELECT statements).

When we execute a multi-row query, we can use a cursor to name this
work area, access the information, and process the rows individually.

With the cursor, we can:
• name the work area,
• access it,
• fetch the rows from it,
• control the process of retrieving data.

Cursors

There are two types of cursors:
• explicit - declared in the PL/SQL program, used to read the set of
records of data from the database,
• implicit - opened implicitly by Oracle for each SQL statement
UPDATE, INSERT, DELETE and SELECT INTO that is used in
the PL/SQL program.

To process an explicit cursor, we must first declare it. We use three
commands to control a cursor:
• open the cursor (with OPEN cursor_name),
• fetch rows from the cursor (using FETCH cursor_name INTO
variable),
• close the cursor (with CLOSE cursor_name).

Example

DECLARE
CURSOR my_cursor IS
SELECT * FROM employees WHERE
department_id=’100’;
vperson my_cursor%ROWTYPE;
BEGIN
OPEN my_cursor;
FETCH my_cursor INTO vperson;
dbms_output.put_line(’Personal data:
’||vperson.last_name||’
’||vperson.first_name);
CLOSE my_cursor;
END;

Remark. The variable vperson is a record (declared using the
attribute %ROWTYPE) with the fields that correspond to the columns
of the cursor my_cursor.

Example

DECLARE
CURSOR my_cursor IS
SELECT * FROM employees WHERE
department_id=’100’;
vperson my_cursor%ROWTYPE;
BEGIN
OPEN my_cursor;
FETCH my_cursor INTO vperson;
dbms_output.put_line(’Personal data:
’||vperson.last_name||’
’||vperson.first_name);
CLOSE my_cursor;
END;

Remark. The variable vperson is a record (declared using the
attribute %ROWTYPE) with the fields that correspond to the columns
of the cursor my_cursor.

Fetching rows from the cursor in a loop: cursor loop FOR

The cursor loop FOR can be used to fetch records from the cursor.
The sequence of statements inside the loop is executed once for each
row that satisfies the query.
When using such a loop, we do not open and close the cursor
explicitly.
When we leave the loop, the cursor is closed automatically (even if
we use an EXIT statement to leave the loop before all rows are
fetched, or an exception is raised inside the loop).

FOR iterator IN cursor_name LOOP
sequence of statements
END LOOP;

Fetching rows from the cursor in a loop: cursor loop FOR
DECLARE
CURSOR my_cursor IS
SELECT * FROM employees WHERE
department_id=’100’;
BEGIN
dbms_output.put_line(’Employees from the
department 100:’);
FOR person IN my_cursor LOOP
dbms_output.put_line(person.last_name||’
’||person.first_name);
END LOOP;
END;

Remark. The iterator variable person for the FOR loop does not
need to be declared in advance. It is a %ROWTYPE record whose
field names match the column names from the query, and that exists
only during the loop.
It is used to store the rows fetched from the cursor; we refer to the
fields of this record variable inside the loop (with the dot notation).

Fetching rows from the cursor in a loop: cursor loop FOR
DECLARE
CURSOR my_cursor IS
SELECT * FROM employees WHERE
department_id=’100’;
BEGIN
dbms_output.put_line(’Employees from the
department 100:’);
FOR person IN my_cursor LOOP
dbms_output.put_line(person.last_name||’
’||person.first_name);
END LOOP;
END;
Remark. The iterator variable person for the FOR loop does not
need to be declared in advance. It is a %ROWTYPE record whose
field names match the column names from the query, and that exists
only during the loop.
It is used to store the rows fetched from the cursor; we refer to the
fields of this record variable inside the loop (with the dot notation).

Cursor attributes
Cursor attributes return useful information about the execution of a
data manipulation statement.

%ISOPEN — returns TRUE, if the cursor is already opened, and
FALSE otherwise.
%ROWCOUNT — returns the number of rows fetched so far; before the
first fetch returns 0;
%FOUND — checks, if there are rows to fetch in the cursor; before the
first fetch from an open cursor, it returns NULL; afterwards, it returns
TRUE if the last fetch returned a row, or FALSE if the last fetch did
not return a row.
%NOTFOUND — before the first fetch from an open cursor, it returns
NULL; then, it returns FALSE if the last fetch returned a row, or
TRUE otherwise.

If a cursor is not open, referencing it with %FOUND, %NOTFOUND
or %ROWCOUNT raises the predefined exception INVALID_CURSOR.

We can use the cursor attributes in procedural statements, but not in
SQL statements.

Example — using cursor attributes
DECLARE
CURSOR cursor1 IS SELECT * FROM countries;
rec_country countries%ROWTYPE;
vcount INT;
BEGIN
OPEN cursor1;
IF cursor1%ISOPEN THEN
Dbms_Output.put_line(’cursor is opened’);
vcount:=cursor1%ROWCOUNT;
Dbms_Output.put_line(’The number of rows
fetched so far: ’||vcount);
FETCH cursor1 INTO rec_country;
vcount:=cursor1%ROWCOUNT;
CLOSE cursor1;
END IF;
Dbms_Output.put_line(’The number of rows
fetched so far: ’||vcount);
END;

Cursors with parameters

The next code displays the data of each country from region 1.

DECLARE
CURSOR cur_country1 IS SELECT * FROM countries
WHERE region_id=1;
BEGIN
FOR country IN cur_country1 LOOP
Dbms_Output.put_line(country.country_id||’
’||country.country_name);
END LOOP;
END;

Cursors with parameters

Suppose that we want to display the data of countries from the given
region, and we want to choose the region id.
In such a case we can use a parameter in our cursor. Such a parameter
is passed to the cursor and is used in the WHERE clause.

DECLARE
CURSOR cur_country2(id INT) IS SELECT * FROM
countries WHERE region_id =id;
BEGIN
FOR country IN cur_country2(2) LOOP
Dbms_Output.put_line(country.country_id||’
’||country.country_name);
END LOOP;
END;

The cursor cur_country2 is a cursor with parameter id.

Cursors with parameters

We can define more than one parameter for a cursor, for example:
CURSOR c1 (dept CHAR, sal NUMBER) IS
SELECT * FROM employee
WHERE dept_no=dept AND salary >=sal;

When the cursor has a parameter (parameters), then using the cursor
(opening it or using with cursor loop FOR) we must pass the values
for all parameters. For example, to open the above defined cursor, use:

OPEN c1(’100’,2500);
The cursor parameters may have default values:
CURSOR c1 (dept CHAR, sal NUMBER DEFAULT 2000)
IS
SELECT * FROM employee
WHERE dept_no=dept AND salary >=sal;

Cursors with parameters

When using cursors with parameters, we must take into account the
following:

I Cursor becomes more reusable with cursor parameters.
I The mode of the parameters can only be IN, i.e., we can only

pass values to the cursor; and cannot pass values out of the
cursor through parameters.

I Default values can be assigned to cursor parameters.
I The scope of the cursor parameters is local to the cursor.
I Only the data type of the parameter is defined, not its length.

Stored procedures

The next type of a PL/SQL programs are stored procedures.
The stored procedure can have parameters of type:
IN, OUT or IN OUT.
The stored procedure can be used to make some operations on the
data in a database or to choose data from the database as well.

CREATE PROCEDURE name(parameters list)
IS

variables declarations
BEGIN

statements
END;

To call a stored procedure from SQL we use EXECUTE.

CREATE PROCEDURE display_country(p_id IN INT)
is
CURSOR country2(id INT) IS SELECT * FROM countries
WHERE region_id =id;
BEGIN
FOR item IN country2(p_id) loop
Dbms_Output.put_line(item.country_name);
END LOOP;

END;

To execute the procedure from SQL, for region with id=2, use:
EXECUTE display_country(2);

To call the procedure from another PL/SQL program, use:
DECLARE v_id INT;
BEGIN
v_id:=1;
display_country(v_id);
END;

CREATE PROCEDURE display_country(p_id IN INT)
is
CURSOR country2(id INT) IS SELECT * FROM countries
WHERE region_id =id;
BEGIN
FOR item IN country2(p_id) loop
Dbms_Output.put_line(item.country_name);
END LOOP;

END;

To execute the procedure from SQL, for region with id=2, use:
EXECUTE display_country(2);

To call the procedure from another PL/SQL program, use:
DECLARE v_id INT;
BEGIN
v_id:=1;
display_country(v_id);
END;

Functions vs. procedures
Function
must return a value (has
RETURN clause);

in most cases has only IN
parameters;

typically, can be call from an
SQL statement, for example
SELECT amean(1,3) FROM

dual;

can be called from another
PL/SQL program, but the result
of the function must be assign
to a variable or parameter (of
type OUT or IN OUT):
DECLARE i number;
BEGIN
i:=amean(1,4);
END;

Procedure
may return values;
can have parameters IN, OUT,
IN OUT;
call from SQL with EXECUTE:
EXECUTE
display_country(3);
can be called from other
PL/SQL programs:
DECLARE id INT;
BEGIN
id:=1;
display_country(id);
END;

Using parameters in procedures and functions

PL/SQL procedures (and functions) can have parameters of three
types:

IN - input parameter, read-only, used to pass data to a function or
procedure; if there is no default defined for this parameter, then calling
a procedure or a function we must provide an actual value for it;

OUT - output parameter, can be used to return data from a procedure
(or, rarely, function); with NULL value until initialize; calling a
procedure or function, we cannot assign a constant or literal to that
parameter (we must use a variable);

IN OUT - input/output parameter; can be used to pass data to a
program and to return data from; can be used in cases when input data
are to be changed during the execution of the program; we cannot
define a DEFAULT value for such parameter; calling a procedure or
function, we cannot assign a constant or literal to it.

Using parameters in procedures and functions

When we call a procedure (function) that has several input
parameters, we have to provide values for each of them, but we may
not give a value for these input parameters, which have the DEFAULT.
There are three notations that can be used to call a procedure
(function): positional, named and mixed.

CREATE OR REPLACE FUNCTION add
(a INT :=0, b INT :=0, c INT :0)
RETURN INT
AS
BEGIN
RETURN a+b/2+c/4;
END;
Call this function from SELECT using positional, named and mixed
notation:
select add(1,2,8) from dual; //a=1,b=2,c=8
select add(1,4) from dual; //a=1,b=4, c default
select add(c=>8,a=>2,b=>6) from dual;

select add(1,c=>4) from dual; //a=1, c=4, b default

Using parameters in procedures and functions

When we call a procedure (function) that has several input
parameters, we have to provide values for each of them, but we may
not give a value for these input parameters, which have the DEFAULT.
There are three notations that can be used to call a procedure
(function): positional, named and mixed.
CREATE OR REPLACE FUNCTION add
(a INT :=0, b INT :=0, c INT :0)
RETURN INT
AS
BEGIN
RETURN a+b/2+c/4;
END;

Call this function from SELECT using positional, named and mixed
notation:
select add(1,2,8) from dual; //a=1,b=2,c=8
select add(1,4) from dual; //a=1,b=4, c default
select add(c=>8,a=>2,b=>6) from dual;

select add(1,c=>4) from dual; //a=1, c=4, b default

Using parameters in procedures and functions

When we call a procedure (function) that has several input
parameters, we have to provide values for each of them, but we may
not give a value for these input parameters, which have the DEFAULT.
There are three notations that can be used to call a procedure
(function): positional, named and mixed.
CREATE OR REPLACE FUNCTION add
(a INT :=0, b INT :=0, c INT :0)
RETURN INT
AS
BEGIN
RETURN a+b/2+c/4;
END;
Call this function from SELECT using positional, named and mixed
notation:
select add(1,2,8) from dual; //a=1,b=2,c=8
select add(1,4) from dual; //a=1,b=4, c default
select add(c=>8,a=>2,b=>6) from dual;

select add(1,c=>4) from dual; //a=1, c=4, b default

Sequences

Sequence in Oracle database - a tool that can be used to generate,
sequentially, integer numbers.

Creating a sequence:

CREATE SEQUENCE name
INCREMENT BY step
START WITH number

Description of the options:
INCREMENT BY step — the number the sequence will be
incremented by (by default 1),
START WITH liczba — the start number (by default 1).

We can manipulate a sequence using the following methods:
CURRVAL — get the current value,
NEXTVAL — get the next value, i.e., after the incrementation by step.

Sequences — using to generate values for primary keys

In table employee we have the primary key on the column emp_no.
We create a sequence which we can later use to generate values for
this primary key:

CREATE SEQUENCE emp_no_seq
INCREMENT BY 1
START WITH 200

We can use the sequence in INSERT statement:

INSERT INTO employee
(emp_no, first_name, last_name, salary,
dept_no, hire_date, job_code, job_grade,
job_country)
VALUES(emp_no_seq.NEXTVAL, ’Anna’,
’Kowalska’,5000,
’000’,sysdate,’Admin’,4,’USA’);

Sequences — methods

Every call of the method NEXTVAL results in incrementing the
sequence by the step. If the generated value is not used (because, for
example, the transaction was roll-backed or an error occurs when
evaluating the INSERT statement), then the generated value is lost.
The next call of NEXTVAL will return the next value.

The same sequence can be used to generate values for primary keys in
several tables.

The method CURRVAL does not change the value of the sequence,
only returns the current one.

We cannot use CURRVAL for the given sequence until we call
NEXTVAL for that sequence at least once.

Exceptions

In PL/SQL, an error condition is called an exception.
Exception — an run-time error, occurs during the execution of the
block (in PL/SQL program).

When an error occurs, an exception is raised. The normal execution
of the block stops. The control transfers to the exception-handling
part of the PL/SQL block, if it is present.

So, handling an exception, we can execute some additional statements
before the block is finished.

Types of exceptions:
I internally defined (by the run-time system), most common have

names (such as NO_DATA_FOUND, ZERO_DIVIDE), the
other Oracle server exceptions can be given names;

I user-defined — defined by the user in the declarative part of the
block, must be raised explicitly by RAISE statement, must be
given names.

Types of exceptions

I Internally define Oracle exceptions.
An internal exception is raised automatically (by the run-time
system) if the PL/SQL program violates a database rule or
exceeds a system-dependent limit.
Each such exception has its code and message describing the
error (a message also contains the code of the given error).

I Predefined exceptions with names.
About 20 most common errors; raised implicitly (automatically)
by the run-time system; need no declaration.

I Non-predefined Oracle error; should be declared if we want to
handle it.

I User-defined errors. Need to be declared. To raise such an error
we use the statement RAISE.

Handling error — section EXCEPTION of the block
When an exception is raised, normal execution of the PL/SQL block
stops and control transfers to its exception-handling part:

DECLARE
...

BEGIN
...

EXCEPTION
WHEN exception1 THEN //handler for exception1

statements;
WHEN exception2 THEN //handler for exception2

statements;
WHEN OTHERS THEN //optional handler for all other errors

statements;
END;

The raised exceptions are catched in exception handlers. Each handler
consists of a WHEN clause, which specifies an exception, followed by
a sequence of statements to be executed when that exception is raised.
These statements complete execution of the block; control does not
return to where the exception was raised.

Predefined Oracle exceptions

Exception Number Description
CASE_NOT_FOUND ORA-06592 none of the choices in the WHEN clauses

of a CASE statement is selected,
and there is no ELSE clause

CURSOR_ALREADY ORA-06511 attempt to open
_OPENED an already open cursor
DUP_VAL ORA-00001 attempt to store duplicate values in a column
_ON_INDEX that is constrained by a unique index
INVALID_NUMBER ORA-01722 in an SQL statement, the conversion

of a character string into a number fails
NO_DATA_FOUND ORA-01403 SELECT INTO statement returns no rows
ROWTYPE ORA-06504 incompatible return types
_MISMATCH
STORAGE_ERROR ORA-06500 PL/SQL ran out of memory

or memory was corrupted
TOO_MANY_ROWS ORA-01422 SELECT INTO statement

returns more than one row
VALUE_ERROR ORA-06502 an arithmetic, conversion, truncation,

or size-constraint error occurs
ZERO_DIVIDE ORA-01476 attempt to divide a number by zero

User-defined exceptions

Declared in a given PL/SQL program. Must be raised explicitly. Have
no specific code and message.
Can be used to react to specific situations during the execution of the
program.
Creating and handling user-defined errors:

I Declaration of a variable of type EXCEPTION (in section
DECLARE);
name_of_exception EXCEPTION

I Raising an exception with the RAISE statement;
RAISE name_of_exception

I Handling an exception (in section EXCEPTION).
WHEN name_of_exception THEN ...

Using procedure RAISE_APPLICATION_ERROR

In Oracle PL/SQL we may associate an error-code and a message
with an user-defined exception, using the procedure
RAISE_APPLICATION_ERROR.
To invoke RAISE_APPLICATION_ERROR, use the following
syntax:

RAISE_APPLICATION_ERROR(err_number number,
err_message varchar2, keep_errors boolean)

err_number – an integer from the range [-20000, -20999]
err_message – message, of length at most 512
keep_errors, if true, then the error is placed on the stack of previous
errors, if false (by default), then the error replaces all previous errors.

When we invoke the procedure RAISE_APPLICATION_ERROR
from a PL/SQL subprogram, the subprogram ends and returns a
user-defined error number and message to the application.

The error number and message can then be trapped like any other
Oracle database error.

Undefined Oracle errors

Each Oracle database error has its own code (error number, which is a
negative integer) and the message describing a given error. The
Oracle database run-time errors have prefix ORA. The compiler errors
have prefix PLS.

Typical Oracle run-time errors:
violating of the primary or foreign key constraint;
violating of the column constraints (such as CHECK, NOT NULL).

To handle error conditions that have no predefined name, use the
OTHERS handler (in section EXCEPTION) or the pragma
EXCEPTION_INIT.

When we use the OTHERS handler, we can retrieve the error code
with the built-in function SQLCODE.

The associated error message can be retrieved with either the
packaged function DBMS_UTILTY.FORMAT_ERROR_STACK or
the built-in function SQLERRM.

Undefined Oracle errors — using pragma EXCEPTION_INIT

The pragma EXCEPTION_INIT tells the compiler to associate an
exception name with an Oracle database error number.

A pragma is a compiler directive that is processed at compile time,
not at run time.

The pragma EXCEPTION_INIT is put in the declarative part of a
PL/SQL block:
DECLARE
– declare an EXCEPTION type variable
exception_name EXCEPTION;
– associate an exception name with an Oracle error number
PRAGMA EXCEPTION_INIT(exception_name,
−error_number);
BEGIN
...
EXCEPTION
WHEN exception_name THEN ...

END;

Undefined Oracle errors

The errors that are not handled may be logged in special tables. For
example:

EXCEPTION
...
WHEN OTHERS THEN
error_number := SQLCODE;
error_info := SQLERRM;
INSERT INTO error_table(user_who, data_when,
error_no, info)
VALUES (USER, SYSDATE,
error_number,error_info);
END;

Oracle errors

The list of Oracle pre-defined errors can be found here:

https://docs.oracle.com/cd/B28359_01/appdev.111/b28370/errors.htm#i9355

All Oracle errors can be found here:

https://docs.oracle.com/cd/B28359_01/server.111/b28278/toc.htm

Oracle DML triggers

Triggers are special type PL/SQL programs, which are fired
automatically as a reaction to certain events in a database.

Triggers are often used to force data integrity and to ensure that the
data stored in the database are consistent with the rules imposed when
designing the database.

Each DML triggers is connected with a certain table (or view) and is
fired as a reaction to the occurence of one of the following events:
when the INSERT, UPDATE or DELETE statement is executed on a
given table (or view).

Triggers — usage

The tasks that can be done using triggers:

I data integrity;
I checking the consistent of inserted or updated data with the rules;
I events logging; in the database we can create special log tables,

inside which we can store information on changes that are done
on more important or sensitive data in our database, the triggers
may be used to insert such information to log tables;

I the data can be changed, for instance, properly formatted, before
inserting into tables;

I generating data automatically, for instance, for auto increment
fields, such as primary keys (using sequences);

Triggers — syntax
CREATE OR REPLACE TRIGGER name
BEFORE / AFTER / INSTEAD OF
INSERT / UPDATE / DELETE
ON table/view
FOR EACH ROW
trigger body

Description:
One of the options BEFORE / AFTER / INSTEAD OF should be
chosen: when the trigger will be fired:

I before the event (type BEFORE),
I after the event (type AFTER),
I instead of the event (type INSTEAD OF) (this type can be

used only for views).

For which DML statement the trigger will be fired: INSERT /
UPDATE / DELETE.

In the clause ON we put the table name or view.

Triggers on the statement or row level

The DML trigger can work at two levels:
I at ROW level, defined with the clause FOR EACH ROW,
I at STATEMENT level (the default option).

The ROW trigger is fired for each row processed by the DML
statement.
The trigger at the STATEMENT level is fired only once for the DML
statement.

For example, if we have trigger for an INSERT statement defined at
the ROW level, and 10 rows are inserted, this trigger will be fired 10
times. In the same situation, a STATEMENT level trigger would be
fired only once.

Pseudorecords OLD and NEW in row-level DML triggers

In the body of the trigger one can use the same instructions, as in
stored procedures.

In row-level triggers, there are also two pseudorecords available:
new and old. These pseudorecords can be used to refer to the current
or previous values in the inserted, deleted or updated rows.

If the trigger is fired for an INSERT statement, only the pseudorecord
new is available; if for DELETE, then we can refer only to the
pseudorecord old; in case of UPDATE, both.

For example, if the row-level trigger is working on the table
employee, AFTER UPDATE, then in order to refer to the previous
value in the column salary, we use :old.salary, while to read the
new value, to which the salary is changed, we use :new.salary.

Restrictions

In DML triggers, we cannot use the instructions that
I change the structure of the table for which the trigger is defined;
I modify the data of the table for which the trigger is defined;
I commit or rollback the transaction;
I call subprograms (procedures, functions) containing such

instructions.

DML triggers for multiple events

The DML trigger can be defined to be fired by several types of DML
statements.
For example, for table employee to define a compound row-level
trigger for statements UPDATE and INSERT we can use:

CREATE OR REPLACE TRIGGER new_trigger
AFTER INSERT OR UPDATE
ON employee
FOR EACH ROW
...

Conditional predicates: INSERTING, UPDATING, DELETING

The triggering event of a DML trigger can be composed of multiple
triggering statements (i.e., INSERT, UPDATE, DELETE).
When one of them fires the trigger, the trigger can determine which
one by using these conditional predicates: INSERTING, UPDATING,
DELETING, UPDATING(column). A conditional predicate can
appear wherever a BOOLEAN expression can appear.
For example, in the IF or CASE statement, to decide which statement
fired the trigger, and execute different block of commands:

IF INSERTING THEN ...
ELSIF UPDATING THEN ...
ELSIF DELETING THEN ...
END IF;

Managing triggers

I To drop the trigger we use DROP TRIGGER name.

Often, we do not want to drop the trigger, but only deactivate it for a
period of time (for example, we plan to evaluate a large amount of
modifications; triggers extend the time of executing DML statements;
we can deactivate the trigger first, do the modifications, and activate it
at the end).

I To deactivate the trigger:
ALTER TRIGGER name DISABLE.

I To activate it:
ALTER TRIGGER name ENABLE.

I For a given table we can have several triggers of the same type;
in this case they are fired sequentially.

Using sequences in triggers

Let emp_no_seq be a sequence. We want to use the values
generated by this sequence as the values of the primary key emp_no
of the table employee.

CREATE OR REPLACE TRIGGER insert_emp_no
BEFORE INSERT ON employee
FOR EACH ROW
BEGIN
IF (:NEW.emp_no IS NULL) THEN
:NEW.emp_no := emp_no_seq.NEXTVAL;
END IF;
END;

Packages

Packages are used to logically group PL/SQL objects such as
subprograms (functions, procedures), types, variables, cursors and
exceptions.

Package consists of:
specyfication (interface), and
body (implementation).

In the specifcation we put all declarions of types, variables, constants,
cursors, exceptions and subprograms.
In the package body there is an implementation of the subprograms
declared in the specification.

Package specification and body are stored separately in the data
dictionary.

Packages

Packages can be used to:

1. store connected objects in one place,

2. make logical groups of objects with given functionality,

3. make it easier to design an application: specification and body
are indepenently stored and compiled,

4. in the specification, which is public, we have only the interface,
and the implementation part is hidden; it is possible to use
private declarations in the body (which are not visible outside the
package),

5. create variables that can be seen as global variables.

Packages

Advantages of using packages:
I increase performance (at the first call to the package, its whole

code is loaded to the memory),
I additional functionality — global variables,
I procedures and functions overloading,
I the code is hidden — only the specification (public interface) is

visible to the user, the implementation is hidden.

Packages — public and private declarations

Package specification Variables declaration
Functions and procedures declarations public
etc.

Package body Variables declaration
Functions and procedures definitions private
etc.

Package specification

Package specification:
I Contains the interface.
I Only the data about what is inside the package, but without an

implementation (without the code of subprograms).
I Can contain the declarations of publicly visible types, variables,

constants, exceptions, cursors.
I Declarations of all publicly visible subprograms.
I It should follow the same rules as the section DECLARE of the

anonymous block.

Package specification — syntax

CREATE OR REPLACE PACKAGE package_name IS
declarations of publicly visible types,
variables, constants, exceptions, cursors
declarations of functions and procedures
END;
Example:
CREATE OR REPLACE PACKAGE country IS
TYPE CountryType IS RECORD
(country_ID CHAR(2),
country_name VARCHAR2(40),
region_ID INT);
CURSOR C_Country(r_id INT) RETURN CountryType;
vcount INT;
PROCEDURE insert_country(c_id IN CHAR, cname
VARCHAR2, cregion_id INT DEFAULT 1);
PROCEDURE display_country(c_id INT DEFAULT 1);

END;

Package specification

I In the specification we can initialize the variables, for otherwise
they get NULL.

I All declarations of the specification are publicly visible to all the
users that have the privilege to access the package.

I There are no restrictions on the order of declarations, but the
elements, that we refer to, should be declared earlier.

I Declarations of subprograms in the specifications does not
contain its code.

I It is possible to create packages that do not contain subprograms,
but only cursors or types, or variables, etc.

Package body

I The package body is stored separately in the data dictionary.
I It contains the codes of implementations for all declarations from

the specification.
I Each of the declarations from the specification must have its

definition in the body.
I For procedures and functions, the name of the subprogram,

parameters (names, order, data types) must be exactly the same
in the specification and body.

I In the body we can put additional declarations, which were not
present in the specification, such as types, variables, cursors or
exceptions.

I The elements that are declared only in the body part are not
visible outside of the package, only in its body.

Package — body

Body:
CREATE OR REPLACE PACKAGE BODY package_name IS
declarations of locally visible types,
variables, constants, exceptions, cursors
definitions of functions and procedures
BEGIN
initialization part of the package / optional
END;
np.

CREATE OR REPLACE PACKAGE BODY country IS
CURSOR C_Country(r_id INT) RETURN CountryType IS
SELECT * FROM countries WHERE region_id=r_id;
PROCEDURE insert_country(c_id IN CHAR, cname
VARCHAR2, cregion_id INT DEFAULT 1) IS
BEGIN
INSERT INTO countries VALUES
(c_id,cname,cregion_id);
END;
PROCEDURE display_country(c_id INT DEFAULT 1) IS
BEGIN
FOR item IN C_Country(r_id)
LOOP
Dbms_Output.put_line(item.Country_id||’
’||item.Country_name);
END LOOP;
END;

END;

Example (from Oracle documentation)

Specification:
CREATE OR REPLACE PACKAGE emp_actions IS
TYPE EmpRecTyp IS RECORD (emp_id INT, salary
REAL);
CURSOR desc_salary RETURN EmpRecTyp;
PROCEDURE hire_employee (
ename VARCHAR2,
job VARCHAR2,
mgr NUMBER,
sal NUMBER,
comm NUMBER,
deptno NUMBER);
PROCEDURE fire_employee (emp_id NUMBER);
END;

Body:
CREATE OR REPLACE PACKAGE BODY emp_actions IS
CURSOR desc_salary RETURN EmpRecTyp IS
SELECT empno, sal FROM emp ORDER BY sal DESC;
PROCEDURE hire_employee (
ename VARCHAR2,
job VARCHAR2,
mgr NUMBER,
sal NUMBER,
comm NUMBER,
deptno NUMBER) IS
BEGIN
INSERT INTO emp VALUES (empno_seq.NEXTVAL, ename,
job, mgr, SYSDATE, sal, comm, deptno);
END;

PROCEDURE fire_employee (emp_id NUMBER) IS
BEGIN
DELETE FROM emp WHERE empno = emp_id;
END;
END;

When we want to call a function or procedure which is defined in the
package from outside the package, we should precede it with the
package name (using dot notation):

EXECUTE country.display_country(2);

To compile a package, use:
ALTER PACKAGE name COMPILE PACKAGE | PACKAGE
BODY;

To remove a package, use:
DROP PACKAGE | PACKAGE BODY name;

Using packages for declaring global variables

If in the package specification there are no declarations of cursors or
subprograms (procedures, functions), but only types, constants,
variables and exceptions, we do not have to create the package body;
for example:
CREATE OR REPLACE PACKAGE customerData IS
TYPE CustDataType IS RECORD
(n customer.cust_no%type,
name customer.customer%type,
phone customer.phone_no%type,
address VARCHAR2(60),
city VARCHAR2(35),
country customer.country%type,
code customer.postal_code%type);
min_payment CONSTANT NUMBER:= 100.00;
vcount INT;
no_paymenet EXCEPTION;

END;

In such a package we can define types and global variables, which can
be referred to within a current session from other subprograms or
triggers.

Overloading in packages

I In the package we can functions (or procedures) with the same
name, but different parameters.

I It allows to use the same function (or procedure) to perform
operations on objects of different types.

I The parameters should be distinct in number, order or types.

For example.
CREATE OR REPLACE PACKAGE emp_pack IS
FUNCTION avg_sal(id_dept NUMBER) RETURN
NUMBER;
FUNCTION avg_sal(id_dept NUMBER, id_manager
NUMBER) RETURN NUMBER;
END;

Overloading - restrictions

I We cannot create two subprograms with the same name, if their
declarations differ only by the parameters names or type:
PROCEDURE A (p_1 IN NUMBER);
PROCEDURE A (p_1 OUT NUMBER);

I We cannot create two functions with the same name, if their
declarations differ only by the type of returning value:
FUNCTION B RETURN NUMBER;
FUNCTION B RETURN DATE;

I Parameters cannot be distinguish if they belong to the same
family of types, for example, such an overloading is not allowed:
PROCEDURE C (p_1 IN CHAR);
PROCEDURE C (p_1 IN VARCHAR2);

	plsql
	blocks
	Control Structures
	Functions
	Cursors
	Procedures
	sequences
	exceptions
	Triggers
	packages

